Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3645
Articles: 2'501'711
Articles rated: 2609

19 April 2024
 
  » arxiv » cond-mat/9908380

 Article overview


Search for a quantum phase transition in U(Pt_(1-x)Pd_x)_3
M. J. Graf ; R. J. Keizer ; A. de Visser ; S. T. Hannahs ;
Date 26 Aug 1999
Journal Physica B 284-288 (2000), 1281-1282
Subject Strongly Correlated Electrons | cond-mat.str-el
AbstractPd in U(Pt_{1-x}Pd_x)_3 suppresses the superconducting T_c to 0 K at critical concentration x_c of 0.007 and induces a conventional AFM state for x > x_c. The resistivity below 1 K shows a deviation from Fermi liquid behavior described by a power law where the exponent ranges from 2 at x=0 to 1.6 for x = x_c. This suggests that a quantum phase transition (QPT) may exist near x_c associated with either the magnetic or superconducting transition temperature = 0 K. Transport for a sample with x = 0.004 < x_c has constant exponent of 1.77 as increasing pressure suppresses T_c to 0 K, suggesting that if a QPT exists it may be associated with the magnetic transition.
Source arXiv, cond-mat/9908380
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.

browser Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)






ScienXe.org
» my Online CV
» Free


News, job offers and information for researchers and scientists:
home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2024 - Scimetrica