Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3645
Articles: 2'500'096
Articles rated: 2609

19 April 2024
 
  » arxiv » hep-th/9907130

 Article overview


Symmetry Algebras of Quantum Matrix Models in the Large-N Limit
C.-W. H. Lee ;
Date 15 Jul 1999
Subject High Energy Physics - Theory; Mathematical Physics; Strongly Correlated Electrons; Exactly Solvable and Integrable Systems | hep-th cond-mat.str-el math-ph math.MP nlin.SI solv-int
AbstractQuantum matrix models in the large-N limit arise in many physical systems like Yang-Mills theory with or without supersymmetry, quantum gravity, string-bit models, various low energy effective models of string theory, M(atrix) theory, quantum spin chain models, and strongly correlated electron systems like the Hubbard model. We introduce, in a unifying fashion, a hierachy of infinite-dimensional Lie superalgebras of quantum matrix models. One of these superalgebras pertains to the open string sector and another one the closed string sector. Physical observables of quantum matrix models like the Hamiltonian can be expressed as elements of these Lie superalgebras. This indicates the Lie superalgebras describe the symmetry of quantum matrix models. We present the structure of these Lie superalgebras like their Cartan subalgebras, root vectors, ideals and subalgebras. They are generalizations of well-known algebras like the Cuntz algebra, the Virasoro algebra, the Toeplitz algebra, the Witt algebra and the Onsager algebra. Just like we learnt a lot about critical phenomena and string theory through their conformal symmetry described by the Virasoro algebra, we may learn a lot about quantum chromodynamics, quantum gravity and condensed matter physics through this symmetry of quantum matrix models described by these Lie superalgebras.
Source arXiv, hep-th/9907130
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.

browser claudebot






ScienXe.org
» my Online CV
» Free


News, job offers and information for researchers and scientists:
home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2024 - Scimetrica