Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3645
Articles: 2'504'585
Articles rated: 2609

24 April 2024
 
  » arxiv » quant-ph/9904101

 Article overview


Hall Normalization Constants for the Bures Volumes of the n-State Quantum Systems
Paul B. Slater ;
Date 29 Apr 1999
Journal J.Phys. A32 (1999) 8231-8246
Subject Quantum Physics; Mathematical Physics | quant-ph math-ph math.MP
AffiliationUniversity of California
AbstractWe report the results of certain integrations of quantum-theoretic interest, relying, in this regard, upon recently developed parameterizations of Boya et al of the n x n density matrices, in terms of squared components of the unit (n-1)-sphere and the n x n unitary matrices. Firstly, we express the normalized volume elements of the Bures (minimal monotone) metric for n = 2 and 3, obtaining thereby "Bures prior probability distributions" over the two- and three-state systems. Then, as an essential first step in extending these results to n > 3, we determine that the "Hall normalization constant" (C_{n}) for the marginal Bures prior probability distribution over the (n-1)-dimensional simplex of the n eigenvalues of the n x n density matrices is, for n = 4, equal to 71680/pi^2. Since we also find that C_{3} = 35/pi, it follows that C_{4} is simply equal to 2^{11} C_{3}/pi. (C_{2} itself is known to equal 2/pi.) The constant C_{5} is also found. It too is associated with a remarkably simple decompositon, involving the product of the eight consecutive prime numbers from 2 to 23. We also preliminarily investigate several cases, n > 5, with the use of quasi-Monte Carlo integration. We hope that the various analyses reported will prove useful in deriving a general formula (which evidence suggests will involve the Bernoulli numbers) for the Hall normalization constant for arbitrary n. This would have diverse applications, including quantum inference and universal quantum coding.
Source arXiv, quant-ph/9904101
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.

browser Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)






ScienXe.org
» my Online CV
» Free


News, job offers and information for researchers and scientists:
home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2024 - Scimetrica