Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 2981
Articles: 2'032'881
Articles rated: 2577

24 January 2021
 
  » arxiv » quant-ph/9911058

 Article overview


Exact Bures Probabilities that Two Quantum Bits are Classically Correlated
Paul B. Slater ;
Date 13 Nov 1999
Journal European Physical Journal B, Oct. 2000, vol. 17 (no.3):471-80
Subject Quantum Physics; Mathematical Physics; Data Analysis, Statistics and Probability | quant-ph math-ph math.MP physics.data-an
AffiliationUniversity of California
AbstractIn previous studies, we have explored the ansatz that the volume elements of the Bures metrics over quantum systems might serve as prior distributions, in analogy to the (classical) Bayesian role of the volume elements ("Jeffreys’ priors") of Fisher information metrics. Continuing this work, we obtain exact Bures probabilities that the members of certain low-dimensional subsets of the fifteen-dimensional convex set of 4 x 4 density matrices are separable or classically correlated. The main analytical tools employed are symbolic integration and a formula of Dittmann (quant-ph/9908044) for Bures metric tensors. This study complements an earlier one (quant-ph/9810026) in which numerical (randomization) --- but not integration --- methods were used to estimate Bures separability probabilities for unrestricted 4 x 4 or 6 x 6 density matrices. The exact values adduced here for pairs of quantum bits (qubits), typically, well exceed the estimate (.1) there, but this disparity may be attributable to our focus on special low-dimensional subsets. Quite remarkably, for the q = 1 and q = 1/2 states inferred using the principle of maximum nonadditive (Tsallis) entropy, the separability probabilities are both equal to 2^{1/2} - 1. For the Werner qubit-qutrit and qutrit-qutrit states, the probabilities are vanishingly small, while in the qubit-qubit case it is 1/4.
Source arXiv, quant-ph/9911058
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.

browser CCBot/2.0 (https://commoncrawl.org/faq/)






ScienXe.org
» my Online CV
» Free


News, job offers and information for researchers and scientists:
home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2021 - Scimetrica