Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3645
Articles: 2'501'711
Articles rated: 2609

20 April 2024
 
  » arxiv » astro-ph/0001228

 Article overview


Quantitative analysis of WC stars: Constraints on neon abundances from ISO/SWS spectroscopy
Luc Dessart ; Paul A. Crowther ; D. John Hillier Allan J. Willis ; Patrick W. Morris ; Karel A. van der Hucht ;
Date 13 Dec 1999
Journal Mon.Not.Roy.Astron.Soc. 315 (2000) 407
Subject astro-ph
AffiliationUCL), Paul A. Crowther (UCL), D. John Hillier (Pittsburgh) Allan J. Willis (UCL), Patrick W. Morris (Amsterdam), Karel A. van der Hucht (Utrecht
AbstractNeon abundances are derived in four Galactic WC stars -- gamma Vel (WR11, WC8+O7.5III), HD156385 (WR90, WC7), HD192103 (WR135, WC8), and WR146 (WC5+O8) - using mid-infrared fine structure lines obtained with ISO/SWS. Stellar parameters for each star are derived using a non-LTE model atmospheric code (Hillier & Miller 1998) together with ultraviolet (IUE), optical (INT, AAT) and infrared (UKIRT, ISO) spectroscopy. In the case of gamma Vel, we adopt results from De Marco et al. (2000), who followed an identical approach. ISO/SWS datasets reveal the [NeIII] 15.5um line in each of our targets, while [NeII] 12.8um, [SIV] 10.5um and [SIII] 18.7um are observed solely in gamma Vel. Using a method updated from Barlow et al. (1988) to account for clumped winds, we derive Ne/He=3-4x10^-3 by number, plus S/He=6x10^-5 for gamma Vel. Neon is highly enriched, such that Ne/S in gamma Vel is eight times higher than cosmic values. However, observed Ne/He ratios are a factor of two times lower than predictions of current evolutionary models of massive stars. An imprecise mass-loss and distance were responsible for the much greater discrepancy in neon content identified by Barlow et al. Our sample of WC5--8 stars span a narrow range in T* (=55--71kK), with no trend towards higher temperature at earlier spectral type, supporting earlier results for a larger sample by Koesterke & Hamann (1995). Stellar luminosities range from 100,000 to 500,000 Lo, while 10^-5.1 < Mdot/(Mo/yr) < 10^-4.5, adopting clumped winds, in which volume filling factors are 10%. In all cases, wind performance numbers are less than 10, significantly lower than recent estimates. Carbon abundances span 0.08 < C/He < 0.25 by number, while oxygen abundances remain poorly constrained.
Source arXiv, astro-ph/0001228
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.

browser Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)






ScienXe.org
» my Online CV
» Free


News, job offers and information for researchers and scientists:
home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2024 - Scimetrica