Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3645
Articles: 2'504'928
Articles rated: 2609

25 April 2024
 
  » arxiv » astro-ph/0001382

 Article overview



Chemical enrichment and star formation in the Milky Way disk; I. Sample description and chromospheric age-metallicity relation
H. J. Rocha-Pinto ; W. J. Maciel ; John Scalo ; Chris Flynn ;
Date 21 Dec 1999
Journal Rocha-Pinto et al. (2000), Astron. & Astrophys., 358, 869
Subject astro-ph
AffiliationIAG/USP - Brazil), W. J. Maciel (IAG/USP - Brazil), John Scalo (Univ. Texas), Chris Flynn (Tuorla Observ. - Finland
AbstractThe age-metallicity relation of the solar neighbourhood is studied using a sample of 552 late-type dwarfs. This sample was built from the intersection of photometric catalogues with chromospheric activity surveys of the Mount Wilson group. For these stars, metallicities were estimated from uvby data, and ages were calculated from their chromospheric emission levels using a new metallicity-dependent chromospheric activity-age relation developed by Rocha-Pinto & Maciel (1998). A careful estimate of the errors in the chromospheric age is made. The errors in the chromospheric indices are shown to include partially the effects of the stellar magnetic cycles, although a detailed treatment of this error is still beyond our knowledge. It is shown that the results are not affected by the presence of unresolved binaries in the sample. We derive an age-metallicity relation which confirms the mean trend found by previous workers. The mean metallicity shows a slow, steady increase with time, amounting at least 0.56 dex in 15 Gyr. The initial metallicity of the disk is around -0.70 dex, in agreement with the G dwarf metallicity distribution. According to our data, the intrinsic cosmic dispersion in metal abundances is around 0.13 dex, a factor of two smaller than that found by Edvardsson et al. (1993). We show that chromospheric ages are compatible with isochrone ages, within the expected errors, so that the difference in the scatter cannot be caused by the accuracy of our ages and metallicities. This reinforces some suggestions that the Edvarsson et al.’s sample is not suitable to the determination of the age-metallicity relation.
Source arXiv, astro-ph/0001382
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.

browser Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)






ScienXe.org
» my Online CV
» Free


News, job offers and information for researchers and scientists:
home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2024 - Scimetrica