Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3645
Articles: 2'500'096
Articles rated: 2609

19 April 2024
 
  » arxiv » astro-ph/0002526

 Article overview


Absorption-Line Probes of Gas and Dust in Galactic Superwinds
Timothy M. Heckman ; Matthew D. Lehnert ; David K. Strickland ; Lee Armus ;
Date 29 Feb 2000
Journal Astrophys.J.Suppl. 129 (2000) 493-516
Subject astro-ph
AbstractWe discuss moderate resolution spectra of the NaD absorption-line in a sample of 32 far-IR-bright starburst galaxies. In 18 cases, the line is produced primarily by interstellar gas, and in 12 of these it is blueshifted by over 100 km/s relative to the galaxy systemic velocity. The absorption-line profiles in these outflow sources span the range from near the galaxy systemic velocity to a maximum blueshift of 400 to 600 km/s. The outflows occur in galaxies systematically viewed more nearly face-on than the others. We therefore argue that the absorbing material consists of ambient interstellar gas accelerated along the minor axis of the galaxy by a hot starburst-driven superwind. The NaD lines are optically-thick, but indirect arguments imply total Hydrogen column densities of N_H = few X 10^{21} cm^{-2}. This implies that the superwind is expelling matter at a rate comparable to the star-formation rate. This outflowing material is very dusty: we find a strong correlation between the depth of the NaD profile and the line-of-sight reddening (E(B-V) = 0.3 to 1 over regions several-to-ten kpc in size). The estimated terminal velocities of superwinds inferred from these data and extant X-ray data are typically 400 to 800 km/s, are independent of the galaxy rotation speed, and are comparable to (substantially exceed) the escape velocities for $L_*$ (dwarf) galaxies. The resulting loss of metals can establish the mass-metallicity relation in spheroids, produce the observed metallicity in the ICM, and enrich a general IGM to 10$^{-1}$ solar metallicity. If the outflowing dust grains survive their journey into the IGM, their effect on observations of cosmologically-distant objects is significant.
Source arXiv, astro-ph/0002526
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.

browser Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)






ScienXe.org
» my Online CV
» Free


News, job offers and information for researchers and scientists:
home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2024 - Scimetrica