Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3643
Articles: 2'488'730
Articles rated: 2609

29 March 2024
 
  » arxiv » astro-ph/0005029

 Article overview


Eclipsing Binaries as Astrophysical Laboratories: Internal Structure, Convective Core Overshooting and Evolution of the B-star Components of V380 Cygni
Edward F. Guinan ; Ignasi Ribas ; Edward L. Fitzpatrick ; Alvaro Gimenez ; Carme Jordi ; George P. McCook ; Daniel M. Popper ( Villanova University ; Univ. de Barcelona ; LAEFF ; IAA ; UCLA ;
Date 2 May 2000
Subject astro-ph
Affiliation1,2), Edward L. Fitzpatrick , Alvaro Gimenez(3,4), Carme Jordi , George P. McCook , and Daniel M. Popper ( Villanova University (USA), Univ. de Barcelona (Spain), LAEFF (CSIC, Spain), IAA (CSIC, Spain), UCLA (USA)
AbstractNew photometric solutions have been carried out on the important eccentric eclipsing system V380 Cygni (B1.5II-III + B2V) from UBV differential photoelectric photometry obtained by us. The photometric elements obtained from the analysis of the light curves have been combined with the spectroscopic solution recently published by Popper & Guinan and have led to the physical properties of the system components. The effective temperature of the stars has been determined by fitting IUE UV spectrophotometry to Kurucz model atmospheres and compared with other determinations from broad-band and intermediate-band standard photometry. The values of mass, absolute radius, and effective temperature, for the primary and secondary stars are: 11.1+/-0.5 Mo, 14.7+/-0.2 Ro, 21350+/-400 K, and 6.95+/-0.25 Mo, 3.74+/-0.07 Ro, 20500+/-500 K, respectively. In addition, a re-determination of the system’s apsidal motion rate has been done from the analysis of 12 eclipse timings obtained from 1923 to 1995. Using stellar structure and evolutionary models with modern input physics, tests on the extent of convection in the core of the more massive star of the system have been carried out. Both the analysis of the log g-log Teff diagram and the apsidal motion study indicate a star with a larger convective core, and thus more centrally condensed, than currently assumed. This has been quantified in form of an overshooting parameter with a value of 0.6+/-0.1. Finally, the tidal evolution of the system (synchronization and circularization times) has also been studied.
Source arXiv, astro-ph/0005029
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.

browser claudebot






ScienXe.org
» my Online CV
» Free


News, job offers and information for researchers and scientists:
home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2024 - Scimetrica