Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3645
Articles: 2'501'711
Articles rated: 2609

20 April 2024
 
  » arxiv » astro-ph/0006174

 Article overview


CU Comae: a new field double-mode RR Lyrae, the most metal poor discovered to date
G. Clementini ; S. Di Tomaso ; L. Di Fabrizio ; A. Bragaglia ; R. Merighi ; M. Tosi ; E. Carretta ; R.G. Gratton ; I.I. Ivans ; A. Kinard ; M. Marconi ; H.A. Smith ; R. Wilhelm ; T. Woodruff ; C. Sneden ;
Date 13 Jun 2000
Subject astro-ph
AbstractWe report the discovery of a new double-mode RR Lyrae variable (RRd) in the field of our Galaxy: CU Comae. CU Comae is the sixth such RRd identified to date and is the most metal-poor RRd ever detected. Based on BVI CCD photometry spanning eleven years of observations, we find that CU Comae has periods P0=0.5441641 +/-0.0000049d and P1=0.4057605 +/-0.0000018d. The amplitude of the primary (first-overtone) period of CU Comae is about twice the amplitude of the secondary (fundamental) period. The combination of the fundamental period of pulsation P0 and the period ratio of P1/P0=0.7457 places the variable on the metal-poor side of the Petersen diagram, in the region occupied by M68 and M15 RRd’s. A mass of 0.83 solar masses is estimated for CU Comae using an updated theoretical calibration of the Petersen diagram. High resolution spectroscopy (R=30,000) covering the full pulsation cycle of CU Comae was obtained with the 2.7 m telescope of the Mc Donald Observatory, and has been used to build up the radial velocity curve of the variable. Abundance analysis done on the four spectra taken near minimum light (phase: 0.54 -- 0.71) confirms the metal poor nature of CU Comae, for which we derive [Fe/H]=-2.38 +/-0.20. This value places this new RRd at the extreme metal-poor edge of the metallicity distribution of the RR Lyrae variables in our Galaxy.
Source arXiv, astro-ph/0006174
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.

browser Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)






ScienXe.org
» my Online CV
» Free


News, job offers and information for researchers and scientists:
home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2024 - Scimetrica