Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3643
Articles: 2'487'895
Articles rated: 2609

29 March 2024
 
  » arxiv » astro-ph/0007176

 Article overview


Pair-Instability Supernovae, Gravity Waves, and Gamma-Ray Transients
C.L. Fryer ; S.E. Woosley ; A. Heger ;
Date 13 Jul 2000
Journal Astrophys.J. 550 (2001) 372-382
Subject astro-ph
AffiliationUC Santa Cruz
AbstractGrowing theoretical evidence suggests that the first generation of stars may have been quite massive (~100-300 solar masses). If they retain their high mass until death, such stars will, after about 3Myr, make pair-instability supernovae. We consider the complete evolution of two zero-metallicity stars of 250 and 300 solar masses. Explosive oxygen and silicon burning cause the 130 solar mass helium core to explode, but explosive burning is unable to drive an explosion in the 300 solar mass star and it collapses to a black hole. For this star, the calculated angular momentum in the presupernova model is sufficient to delay black hole formation and the star initially forms a 50 solar mass, 1000km core within which neutrinos are trapped. Although the star does not become dynamically unstable, the calculated growth time of secular rotational instabilities is shorter than the black hole formation time, and such instabilities may develop. We estimate the energy and amplitude of the gravitational waves emitted during this collapse. After the black hole forms, accretion continues through a disk. Although the disk is far too large and cool to transport energy efficiently to the rotational axis by neutrino annihilation, it has ample potential energy to produce a 1e54erg jet driven by magnetic fields. The interaction of this jet with surrounding circumstellar gas may produce an energetic gamma-ray transient, but given the redshift and time scale, this is probably not a model for typical gamma-ray bursts.
Source arXiv, astro-ph/0007176
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.

browser claudebot






ScienXe.org
» my Online CV
» Free


News, job offers and information for researchers and scientists:
home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2024 - Scimetrica