Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3643
Articles: 2'488'730
Articles rated: 2609

29 March 2024
 
  » arxiv » astro-ph/0012163

 Article overview


MACHO 96-LMC-2: Lensing of a Binary Source in the LMC and Constraints on the Lensing Object
C.Alcock ; R.A.Allsman ; D.R.Alves ; T.S.Axelrod ; A.C.Becker ; D.P.Bennett ; K.H.Cook ; A.J.Drake ; K.C.Freeman ; M.Geha ; K.Griest ; M.J.Lehner ; S.L.Marshall ; D.Minniti ; C.A.Nelson ; B.A.Peterson ; P.Popowski ; M.R.Pratt ; P.J.Quinn ; C.W.Stubbs ; W.Sutherland ; A.B.Tomaney ; T.Vandehei ; D.Welch ;
Date 7 Dec 2000
Subject astro-ph
AbstractWe present photometry and analysis of the microlensing alert MACHO 96-LMC-2. The ~3% photometry provided by the Global Microlensing Alert Network follow--up effort reveals a periodic modulation in the lightcurve. We attribute this to binarity of the lensed source. Microlensing fits to a rotating binary source magnified by a single lens converge on two minima, separated by delta chi^2 ~ 1. The most significant fit X1 predicts a primary which contributes ~100% of the light, a dark secondary, and an orbital period (T) of 9.2 days. The second fit X2 yields a binary source with two stars of roughly equal mass and luminosity, and T = 21.2 days. The lensed object appears to lie on the upper LMC main sequence. We estimate the mass of the primary component of the binary system, M ~2 M_sun. For the preferred model X1, we explore the range of dark companions by assuming 0.1 M_sun and 1.4 M_sun objects in models X1a and X1b, respectively. We find lens velocities projected to the LMC in these models of v^hat_X1a = 18.3 +/- 3.1 km/s and v^hat_X1b = 188 +/- 32 k/ms. In both these cases, a likelihood analysis suggests an LMC lens is preferred over a Galactic halo lens, although only marginally so in model X1b. We also find v^hat_X2 = 39.6 +/- 6.1 k/ms, where the likelihood for the lens location is strongly dominated by the LMC disk. In all cases, the lens mass is consistent with that of an M-dwarf. The LMC self-lensing rate contributed by 96-LMC-2 is consistent with model self-lensing rates. (Abridged)
Source arXiv, astro-ph/0012163
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.

browser claudebot






ScienXe.org
» my Online CV
» Free


News, job offers and information for researchers and scientists:
home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2024 - Scimetrica