Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3643
Articles: 2'487'895
Articles rated: 2609

28 March 2024
 
  » arxiv » cond-mat/0002440

 Article overview


d- and p-wave superconductivity mediated by spin fluctuations in two- and three-dimensional single-band repulsive Hubbard model
Ryotaro Arita ; Kazuhiko Kuroki ; Hideo Aoki ;
Date 29 Feb 2000
Subject cond-mat
AbstractWe have systematically studied superconducting instabilities in the repulsive Hubbard model for d-wave and p-wave pairing in various 2D and 3D lattices. Using fluctuation exchange approximation, we consider 3D face centered cubic lattice, 3D body centered cubic lattice, 3D simple cubic lattice, 2D square lattice and 2D triangular lattice, where either strong ferro- or antiferromagnetic spin fluctuation is present. We show that (i) d-wave instability mediated by antiferromagnetic spin fluctuations is stronger than p-wave instability mediated by ferromagnetic spin fluctuations both in 2D and 3D, and (ii)d-wave instability in 2D is much stronger than that in 3D. These amount that the "best" situation is the antiferromagnetic-fluctuation mediated in 2D as far as the single-band Hubbard model on ordinary lattices are concerned.
Source arXiv, cond-mat/0002440
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.

browser claudebot






ScienXe.org
» my Online CV
» Free


News, job offers and information for researchers and scientists:
home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2024 - Scimetrica