Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3645
Articles: 2'501'711
Articles rated: 2609

20 April 2024
 
  » arxiv » cond-mat/0005127

 Article overview


Hopping in Disordered Media: A Model Glass Former and A Hopping Model
Thomas B. Schroeder ;
Date 8 May 2000
Subject Disordered Systems and Neural Networks; Materials Science; Soft Condensed Matter | cond-mat.dis-nn cond-mat.mtrl-sci cond-mat.soft
AbstractTwo models involving particles moving by ``hopping’’ in disordered media are investigated: I) A model glass-forming liquid is investigated by molecular dynamics under (pseudo-) equilibrium conditions. ``Standard’’ results such as mean square displacements, intermediate scattering functions, etc. are reported. At low temperatures hopping is present in the system as indicated by a secondary peak in the distribution of particle displacements during a time interval ’t’. The dynamics of the model is analyzed in terms of its potential energy landscape (potential energy as function of the 3N particle coordinates), and we present direct numerical evidence for a 30 years old picture of the dynamics at sufficiently low temperatures. Transitions between local potential energy minima in configuration space are found to involve particles moving in a cooperative string-like manner. II) In the symmetric hopping model particles are moving on a lattice by doing thermally activated hopping over energy barriers connecting nearest neighbor sites. This model is analyzed in the extreme disorder limit (i.e. low temperatures) using the Velocity Auto Correlation (VAC) method. The VAC method is developed in this thesis and has the advantage over previous methods, that it can calculate a diffusive regime in finite samples using periodic boundary conditions. Numerical results using the VAC method are compared to three analytical approximations, including the Diffusion Cluster Approximation (DCA), which is found to give excellent agrement with the numerical results.
Source arXiv, cond-mat/0005127
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.

browser Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)






ScienXe.org
» my Online CV
» Free


News, job offers and information for researchers and scientists:
home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2024 - Scimetrica