Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3645
Articles: 2'504'928
Articles rated: 2609

25 April 2024
 
  » arxiv » cond-mat/0008050

 Article overview



Pseudogap and Kinetic Pairing Under Critical Differentiation of Electrons in Cuprate Superconductors
Masatoshi Imada ; Shigeki Onoda ;
Date 3 Aug 2000
Journal Open Problems in Strongly Correlated Electron Systems, ed. by J. Bonca et al. (Kluwer Academic Pub., 2001) p.69
Subject Strongly Correlated Electrons; Superconductivity | cond-mat.str-el cond-mat.supr-con
AbstractSuperconducting mechanism of cuprates is discussed in the light of the proximity of the Mott insulator. The proximity accompanied by suppression of coherence takes place in an inhomogeneous way in the momentum space in finite-dimensional systems. Studies on instabilities of metals consisted of such differentiated electrons in the momentum space are reviewed from a general point of view. A typical example of the differentiation is found in the flattening of the quasiparticle dispersion discovered around momenta $(pi,0)$ and $(0,pi)$ on 2D square lattices. This flattening even controls the criticality of the metal-insulator transition. Such differentiation and suppressed coherence subsequently cause an instability to the superconducting state in the second order of the strong coupling expansion. The d-wave pairing interaction is generated from such local but kinetic processes in the absence of disturbance from the coherent single-particle excitations. The superconducting mechanism emerges from a direct kinetic origin which is conceptually different from the pairing mechanism mediated by bosonic excitations as in magnetic, excitonic, and BCS mechanisms. Pseudogap phenomena widely observed in the underdoped cuprates are then naturally understood from the mode-mode coupling of d-wave superconducting (dSC) fluctuations repulsively coupled with antiferromagnetic (AFM) ones. When we assume the existence of a strong d-wave channel repulsively competing with AFM fluctuations under the formation of flat and damped single-particle dispersion, we reproduce basic properties of the pseudogap seen in the magnetic resonance, neutron scattering, angle resolved photoemission and tunneling measurements in the cuprates.
Source arXiv, cond-mat/0008050
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.

browser Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)






ScienXe.org
» my Online CV
» Free


News, job offers and information for researchers and scientists:
home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2024 - Scimetrica