Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3643
Articles: 2'487'895
Articles rated: 2609

28 March 2024
 
  » arxiv » cond-mat/0008338

 Article overview


Mapping atomistic to coarse-grained polymer models using automatic simplex optimization to fit structural properties
Dirk Reith ; Hendrik Meyer ; Florian Mueller-Plathe ;
Date 23 Aug 2000
Subject Soft Condensed Matter; Materials Science; Statistical Mechanics | cond-mat.soft cond-mat.mtrl-sci cond-mat.stat-mech
AbstractWe develop coarse-grained force fields for poly (vinyl alcohol) and poly (acrylic acid) oligomers. In both cases, one monomer is mapped onto a coarse-grained bead. The new force fields are designed to match structural properties such as radial distribution functions of various kinds derived by atomistic simulations of these polymers. The mapping is therefore constructed in a way to take into account as much atomistic information as possible. On the technical side, our approach consists of a simplex algorithm which is used to optimize automatically non-bonded parameters as well as bonded parameters. Besides their similar conformation (only the functional side group differs), poly (acrylic acid) was chosen to be in aqueous solution in contrast to a poly (vinyl alcohol) melt. For poly (vinyl alcohol) a non-optimized bond angle potential turns out to be sufficient in connection with a special, optimized non-bonded potential. No torsional potential has to be applied here. For poly (acrylic acid), we show that each peak of the radial distribution function is usually dominated by some specific model parameter(s). Optimization of the bond angle parameters is essential. The coarse-grained forcefield reproduces the radius of gyration of the atomistic model. As a first application, we use the force field to simulate longer chains and compare the hydrodynamic radius with experimental data.
Source arXiv, cond-mat/0008338
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.

browser claudebot






ScienXe.org
» my Online CV
» Free


News, job offers and information for researchers and scientists:
home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2024 - Scimetrica