Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3645
Articles: 2'500'096
Articles rated: 2609

18 April 2024
 
  » arxiv » cond-mat/0010325

 Article overview


Interface localisation-delocalisation transition in a symmetric polymer blend: a finite-size scaling Monte Carlo study
M. Mueller ; K. Binder ;
Date 20 Oct 2000
Subject Statistical Mechanics; Soft Condensed Matter | cond-mat.stat-mech cond-mat.soft
AffiliationJoh. Gutenberg Universitaet, Mainz, Germany
AbstractUsing extensive Monte Carlo simulations we study the phase diagram of a symmetric binary (AB) polymer blend confined into a thin film as a function of the film thickness D. The monomer-wall interactions are short ranged and antisymmetric, i.e, the left wall attracts the A-component of the mixture with the same strength as the right wall the B-component, and give rise to a first order wetting transition in a semi-infinite geometry. The phase diagram and the crossover between different critical behaviors is explored. For large film thicknesses we find a first order interface localisation/delocalisation transition and the phase diagram comprises two critical points, which are the finite film width analogies of the prewetting critical point. Using finite size scaling techniques we locate these critical points and present evidence of 2D Ising critical behavior. When we reduce the film width the two critical points approach the symmetry axis $phi=1/2$ of the phase diagram and for $D approx 2 R_g$ we encounter a tricritical point. For even smaller film thickness the interface localisation/delocalisation transition is second order and we find a single critical point at $phi=1/2$. Measuring the probability distribution of the interface position we determine the effective interaction between the wall and the interface. This effective interface potential depends on the lateral system size even away from the critical points. Its system size dependence stems from the large but finite correlation length of capillary waves. This finding gives direct evidence for a renormalization of the interface potential by capillary waves in the framework of a microscopic model.
Source arXiv, cond-mat/0010325
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.

browser claudebot






ScienXe.org
» my Online CV
» Free


News, job offers and information for researchers and scientists:
home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2024 - Scimetrica