  
  
Stat 
Members: 2931 Articles: 2'017'839 Articles rated: 2575
26 November 2020 

   

Article overview
 

Direct current generation due to harmonic mixing: From bulk semiconductors to semiconductor superlattices  Kirill N. Alekseev
; Feodor V. Kusmartsev
;  Date: 
19 Dec 2000  Subject:  Mesoscopic Systems and Quantum Hall Effect; Statistical Mechanics  condmat.meshall condmat.statmech  Affiliation:  Oulu U, Finland; Loughborough U., UK  Abstract:  We discuss an effect of dc current and dc voltage (stopping bias) generation in a semiconductor superlattice subjected by an ac electric field and its phaseshifted nth harmonic. In the low field limit, we find a simple dependence of dc voltage on a strength, frequency, and relative phase of mixing harmonics for an arbitrary even value of n. We show that the generated dc voltage has a maximum when a frequency of ac field is of the order of a scattering constant of electrons in a superlattice. This means that for typical semiconductor superlattices at room temperature operating in the THz frequency domain the effect is really observable. We also made a comparison of a recent paper describing an effect of a directed current generation in a semiconductor superlattice subjected by ac field and its second harmonic (n=2) [K.Seeger, Appl.Phys.Lett. 76(2000)82] with our earlier findings describing the same effect [K.Alekseev et al., Europhys. Lett. 47(1999)595; condmat/9903092 ]. For the mixing of an ac field and its nth harmonic with n>=4, we found that additionally to the phaseshift controlling of the dc current, there is a frequency control. This frequency controlling of the dc current direction is absent in the case of n=2. The found effect is that, both the dc current suppression and the dc current reversals exist for some particular values of ac field frequency. For typical semiconductor superlattices such an interesting behavior of the dc current should be observable also in the THz domain. Finally, we briefly review the history of the problem of the dc current generation at mixing of harmonics in semiconductors and semiconductor microstructures.  Source:  arXiv, condmat/0012348  Services:  Forum  Review  PDF  Favorites 


No review found.
Did you like this article?
Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.
browser CCBot/2.0 (https://commoncrawl.org/faq/)

 



 News, job offers and information for researchers and scientists:
 