Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3645
Articles: 2'501'711
Articles rated: 2609

19 April 2024
 
  » arxiv » astro-ph/0512138

 Article overview


The Phoenix Deep Survey: The star-formation rates and the stellar masses of EROs
A. Georgakakis ; A. M. Hopkins ; J. Afonso ; M. Sullivan ; B. Mobasher ; L. E. Cram ;
Date 6 Dec 2005
Journal Mon.Not.Roy.Astron.Soc. 367 (2006) 331-338
AbstractWe estimate the star-formation rates and the stellar masses of the Extremely Red objects (EROs) detected in a 180arcmin2 Ks-band survey (Ks~20mag). This sample is complemented by sensitive 1.4GHz radio observations (12micro-Jy; 1sigma rms) and multiwaveband photometric data (UBVRIJ) as part of the Phoenix Deep Survey. For bright K<19.5mag EROs in this sample (I-K>4mag; total of 177) we use photometric methods to discriminate dust-enshrouded active systems from early-type galaxies and to constrain their redshifts. Radio stacking is then employed to estimate mean radio flux densities of 8.6 (3sigma) and 6.4micro-Jy (2.4sigma) for the dusty and early-type subsamples respectively. Assuming that dust enshrouded active EROs are powered by star-formation the above radio flux density at the median redshift of z=1 translates to a radio luminosity of 4.5e22W/Hz and a star-formation rate of SFR=25Mo/yr. Combining this result with photometric redshift estimates we find a lower limit to the star-formation rate density of ~0.02Mo/yr/Mpc^3 for the K<19.5mag dusty EROs in the range z=0.85-1.35. Comparison with the SFR density estimated from previous ERO samples (with similar selection criteria) using optical emission lines, suffering dust attenuation, suggests a mean dust reddening of at least E(B-V)~0.5 for this population. We further use the Ks-band luminosity as proxy to stellar mass and argue that the dust enshrouded EROs in our sample are massive systems, M>5e10Mo. We also find that EROs represent a sizable fraction (~50%) of the number density of galaxies more massive than M=5e10Mo at z~1, with almost equal contributions from dusty and early types. Similarly, we find that EROs contribute about half of the mass density of the Universe at z~1 after taking into account incompleteness because of the limit K=19.5mag.
Source arXiv, astro-ph/0512138
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.

browser Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)






ScienXe.org
» my Online CV
» Free


News, job offers and information for researchers and scientists:
home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2024 - Scimetrica