Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3643
Articles: 2'488'730
Articles rated: 2609

29 March 2024
 
  » arxiv » astro-ph/0703029

 Article overview


Stellar Kinematics in the Complicated Inner Spheroid of M31: Discovery of Substructure Along the Southeastern Minor Axis and its Relationship to the Giant Southern Stream
Karoline M. Gilbert ; Mark Fardal ; Jasonjot S. Kalirai ; Puragra Guhathakurta ; Marla C. Geha ; Jedidah Isler ; Steven R. Majewski ; James C. Ostheimer ; Richard J. Patterson ; David B. Reitzel ; Evan Kirby ; Michael C. Cooper ;
Date 1 Mar 2007
AbstractWe present the discovery of a kinematically-cold stellar population along the SE minor axis of the Andromeda galaxy (M31) that is likely the forward continuation of M31’s giant southern stream. This discovery was made in the course of an on-going spectroscopic survey of red giant branch (RGB) stars in M31 using the DEIMOS instrument on the Keck II 10-m telescope. Stellar kinematics are investigated in eight fields located 9-30 kpc from M31’s center (in projection). A likelihood method based on photometric and spectroscopic diagnostics is used to isolate confirmed M31 RGB stars from foreground Milky Way dwarf stars: for the first time, this is done without using radial velocity as a selection criterion, allowing an unbiased study of M31’s stellar kinematics. The radial velocity distribution of the 1013 M31 RGB stars shows evidence for the presence of two components. The broad (hot) component has a velocity dispersion of 129 km/s and presumably represents M31’s virialized spheroid. A significant fraction (19%) of the population is in a narrow (cold) component centered near M31’s systemic velocity with a velocity dispersion that decreases with increasing radial distance, from 55.5 km/s at R_proj=12 kpc to 10.6 km/s at R_proj=18 kpc. The spatial and velocity distribution of the cold component matches that of the "southeast shelf" predicted by the Fardal et al. (2007) orbital model of the progenitor of the giant southern stream. The metallicity distribution of the cold component matches that of the giant southern stream, but is about 0.2 dex more metal rich on average than that of the hot spheroidal component. We discuss the implications of our discovery on the interpretation of the intermediate-age spheroid population found in this region in recent ultra-deep HST imaging studies.
Source arXiv, astro-ph/0703029
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.

browser claudebot






ScienXe.org
» my Online CV
» Free


News, job offers and information for researchers and scientists:
home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2024 - Scimetrica