forgot password?
register here
Research articles
  search articles
  reviews guidelines
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
Members: 2981
Articles: 2'032'881
Articles rated: 2577

24 January 2021
  » arxiv » physics/0005062

 Article overview

Applying MDL to Learning Best Model Granularity
Qiong Gao ; Ming Li ; Paul Vitanyi ;
Date 23 May 2000
Subject Data Analysis, Statistics and Probability; Artificial Intelligence; Computer Vision and Pattern Recognition | cs.AI cs.CV
AffiliationChinese Academy of Sciences), Ming Li (University of California, Santa Barbara), Paul Vitanyi (CWI and University of Amsterdam
AbstractThe Minimum Description Length (MDL) principle is solidly based on a provably ideal method of inference using Kolmogorov complexity. We test how the theory behaves in practice on a general problem in model selection: that of learning the best model granularity. The performance of a model depends critically on the granularity, for example the choice of precision of the parameters. Too high precision generally involves modeling of accidental noise and too low precision may lead to confusion of models that should be distinguished. This precision is often determined ad hoc. In MDL the best model is the one that most compresses a two-part code of the data set: this embodies ``Occam’s Razor.’’ In two quite different experimental settings the theoretical value determined using MDL coincides with the best value found experimentally. In the first experiment the task is to recognize isolated handwritten characters in one subject’s handwriting, irrespective of size and orientation. Based on a new modification of elastic matching, using multiple prototypes per character, the optimal prediction rate is predicted for the learned parameter (length of sampling interval) considered most likely by MDL, which is shown to coincide with the best value found experimentally. In the second experiment the task is to model a robot arm with two degrees of freedom using a three layer feed-forward neural network where we need to determine the number of nodes in the hidden layer giving best modeling performance. The optimal model (the one that extrapolizes best on unseen examples) is predicted for the number of nodes in the hidden layer considered most likely by MDL, which again is found to coincide with the best value found experimentally.
Source arXiv, physics/0005062
Services Forum | Review | PDF | Favorites   
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
of broad interest:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.

browser CCBot/2.0 (
» my Online CV
» Free

News, job offers and information for researchers and scientists:
home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2021 - Scimetrica