Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3645
Articles: 2'504'585
Articles rated: 2609

24 April 2024
 
  » » arxiv » 149514

 Article forum



Quasiparticle undressing: a new route to collective effects in solids
J.E. Hirsch ;
Date 28 Nov 2002
Journal "Concepts in Electron Correlation", ed. by A.C. Hewson and V. Zlatic, Kluwer Academic Publishers, Dordrecht, 2003, p. 371.
Subject Strongly Correlated Electrons | cond-mat.str-el
AbstractThe carriers of electric current in a metal are quasiparticles dressed by electron-electron interactions, which have a larger effective mass $m^*$ and a smaller quasiparticle weight $z$ than non-interacting carriers. If the momentum dependence of the self-energy can be neglected, the effective mass enhancement and quasiparticle weight of quasiparticles at the Fermi energy are simply related by $z=m/m^*$ ($m$=bare mass). We propose that both superconductivity and ferromagnetism in metals are driven by quasiparticle ’undressing’, i.e., that the correlations between quasiparticles that give rise to the collective state are associated with an increase in $z$ and a corresponding decrease in $m^*$ of the carriers. Undressing gives rise to lowering of kinetic energy, which provides the condensation energy for the collective state. In contrast, in conventional descriptions of superconductivity and ferromagnetism the transitions to these collective states result in $increase$ in kinetic energy of the carriers and are driven by lowering of potential energy and exchange energy respectively.
Source arXiv, cond-mat/0211642
Services Forum | Review | PDF | Favorites   
 

No message found in this article forum.  You have a question or message about this article? Ask the community and write a message in the forum.
If you want to rate this article, please use the review section..

Subject of your forum message:
Write your forum message below (min 50, max 2000 characters)

2000 characters left.
Please, read carefully your message since you cannot modify it after submitting.

  To add a message in the forum, you need to login or register first. (free): registration page






ScienXe.org
» my Online CV
» Free


News, job offers and information for researchers and scientists:
home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2024 - Scimetrica