Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3645
Articles: 2'504'928
Articles rated: 2609

25 April 2024
 
  » 1745719

 Article forum



Mixing time of a kinetically constrained spin model on trees: power law scaling at criticality
Nicoletta Cancrini ; Fabio Martinelli ; Cyril Roberto ; Cristina Toninelli ;
Date 26 Nov 2012
AbstractOn the rooted $k$-ary tree we consider a 0-1 kinetically constrained spin model in which the occupancy variable at each node is re-sampled with rate one from the Bernoulli(p) measure iff all its children are empty. For this process the following picture was conjectured to hold. As long as $p$ is below the percolation threshold $p_c=1/k$ the process is ergodic with a finite relaxation time while, for $p>p_c$, the process on the infinite tree is no longer ergodic and the relaxation time on a finite regular sub-tree becomes exponentially large in the depth of the tree. At the critical point $p=p_c$ the process on the infinite tree is still ergodic but with an infinite relaxation time. Moreover, on finite sub-trees, the relaxation time grows polynomially in the depth of the tree.
The conjecture was recently proved by the second and forth author except at criticality. Here we analyse the critical and quasi-critical case and prove for the relevant time scales: (i) power law behaviour in the depth of the tree at $p=p_c$ and (ii) power law scaling in $(p_c-p)^{-1}$ when $p$ approaches $p_c$ from below. Our results, which are very close to those obtained recently for the Ising model at the spin glass critical point, represent the first rigorous analysis of a kinetically constrained model at criticality.
Source arXiv, 1211.5974
Services Forum | Review | PDF | Favorites   
 

No message found in this article forum.  You have a question or message about this article? Ask the community and write a message in the forum.
If you want to rate this article, please use the review section..

Subject of your forum message:
Write your forum message below (min 50, max 2000 characters)

2000 characters left.
Please, read carefully your message since you cannot modify it after submitting.

  To add a message in the forum, you need to login or register first. (free): registration page






ScienXe.org
» my Online CV
» Free


News, job offers and information for researchers and scientists:
home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2024 - Scimetrica