Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3645
Articles: 2'500'096
Articles rated: 2609

19 April 2024
 
  » » arxiv » 217094

 Article forum


Microscopic construction of the chiral Luttinger liquid theory of the quantum Hall edge
A.Boyarsky ; Vadim V.Cheianov ; O. Ruchayskiy ;
Date 23 Feb 2004
Subject Mesoscopic Systems and Quantum Hall Effect; Strongly Correlated Electrons | cond-mat.mes-hall cond-mat.str-el hep-th
AbstractWe give a microscopic derivation of the chiral Luttinger liquid theory for the Laughlin states. Starting from the wave function describing an arbitrary incompressibly deformed Laughlin state (IDLS) we quantize these deformations. In this way we obtain the low-energy projections of local microscopic operators and derive the quantum field theory of edge excitations directly from quantum mechanics of electrons. This shows that to describe experimental and numeric deviations from chiral Luttinger liquid theory one needs to go beyond Laughlin’s approximation. We show that in the large N limit the IDLS is described by the dispersionless Toda hierarchy.
Source arXiv, cond-mat/0402562
Services Forum | Review | PDF | Favorites   
 

No message found in this article forum.  You have a question or message about this article? Ask the community and write a message in the forum.
If you want to rate this article, please use the review section..

Subject of your forum message:
Write your forum message below (min 50, max 2000 characters)

2000 characters left.
Please, read carefully your message since you cannot modify it after submitting.

  To add a message in the forum, you need to login or register first. (free): registration page






ScienXe.org
» my Online CV
» Free


News, job offers and information for researchers and scientists:
home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2024 - Scimetrica