Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3645
Articles: 2'504'585
Articles rated: 2609

24 April 2024
 
  » » arxiv » 230067

 Article forum



Evaluating the Gapless Color-Flavor Locked Phase
Mark Alford ; Chris Kouvaris ; Krishna Rajagopal ;
Date 11 Jun 2004
Journal Phys.Rev. D71 (2005) 054009
Subject hep-ph nucl-th
AffiliationWashington Univ, St Louis), Chris Kouvaris (MIT), Krishna Rajagopal (MIT
AbstractIn neutral cold quark matter that is sufficiently dense that the strange quark mass M_s is unimportant, all nine quarks (three colors; three flavors) pair in a color-flavor locked (CFL) pattern, and all fermionic quasiparticles have a gap. We recently argued that the next phase down in density (as a function of decreasing quark chemical potential mu or increasing strange quark mass M_s) is the new ``gapless CFL’’ (``gCFL’’) phase in which only seven quasiparticles have a gap, while there are gapless quasiparticles described by two dispersion relations at three momenta. There is a continuous quantum phase transition from CFL to gCFL quark matter at M_s^2/mu approximately equal to 2*Delta, with Delta the gap parameter. Gapless CFL, like CFL, leaves unbroken a linear combination "Q-tilde" of electric and color charges, but it is a Q-tilde-conductor with gapless Q-tilde-charged quasiparticles and a nonzero electron density. In this paper, we evaluate the gapless CFL phase, in several senses. We present the details underlying our earlier work which showed how this phase arises. We display all nine quasiparticle dispersion relations in full detail. Using a general pairing ansatz that only neglects effects that are known to be small, we perform a comparison of the free energies of the gCFL, CFL, 2SC, gapless 2SC, and 2SCus phases. We conclude that as density drops, making the CFL phase less favored, the gCFL phase is the next spatially uniform quark matter phase to occur. A mixed phase made of colored components would have lower free energy if color were a global symmetry, but in QCD such a mixed phase is penalized severely.
Source arXiv, hep-ph/0406137
Services Forum | Review | PDF | Favorites   
 

No message found in this article forum.  You have a question or message about this article? Ask the community and write a message in the forum.
If you want to rate this article, please use the review section..

Subject of your forum message:
Write your forum message below (min 50, max 2000 characters)

2000 characters left.
Please, read carefully your message since you cannot modify it after submitting.

  To add a message in the forum, you need to login or register first. (free): registration page






ScienXe.org
» my Online CV
» Free


News, job offers and information for researchers and scientists:
home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2024 - Scimetrica