Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3669
Articles: 2'599'751
Articles rated: 2609

18 March 2025
 
  » arxiv » 0708.0046

 Article overview



Sparse and stable Markowitz portfolios
Joshua Brodie ; Ingrid Daubechies ; Christine De Mol ; Domenico Giannone ;
Date 1 Aug 2007
AbstractThe Markowitz mean-variance optimizing framework has served as the basis for modern portfolio theory for more than 50 years. However, efforts to translate this theoretical foundation into a viable portfolio construction algorithm have been plagued by technical difficulties stemming from the instability of the original optimization problem with respect to the available data. In this paper we address these issues of estimation error by regularizing the Markowitz objective function through the addition of an $ell_1$ penalty. This penalty stabilizes the optimization problem, encourages sparse portfolios, and facilitates treatment of transaction costs in a transparent way. We implement this methodology using the Fama and French 48 industry portfolios as our securities. Using only a modest amount of training data, we construct portfolios whose out-of-sample performance, as measured by Sharpe ratio, is consistently and significantly better than that of the na"{i}ve portfolio comprising equal investments in each available asset. In addition to their excellent performance, these portfolios have only a small number of active positions, a highly desirable attribute for real life applications. We conclude by discussing a collection of portfolio construction problems which can be naturally translated into optimizations involving $ell_1$ penalties and which can thus be tackled by algorithms similar to those discussed here.
Source arXiv, 0708.0046
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.






ScienXe.org
» my Online CV
» Free

home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2025 - Scimetrica