Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3669
Articles: 2'599'751
Articles rated: 2609

18 March 2025
 
  » arxiv » 0708.0069

 Article overview



Twisted Gauge and Gravity Theories on the Groenewold-Moyal Plane
A. P. Balachandran ; A. Pinzul ; B. A. Qureshi ; S. Vaidya ;
Date 1 Aug 2007
AbstractRecent work [hep-th/0504183,hep-th/0508002] indicates an approach to the formulation of diffeomorphism invariant quantum field theories (qft’s) on the Groenewold-Moyal (GM) plane. In this approach to the qft’s, statistics gets twisted and the S-matrix in the non-gauge qft’s becomes independent of the noncommutativity parameter theta^{mu u}. Here we show that the noncommutative algebra has a commutative spacetime algebra as a substructure: the Poincare, diffeomorphism and gauge groups are based on this algebra in the twisted approach as is known already from the earlier work of [hep-th/0510059]. It is natural to base covariant derivatives for gauge and gravity fields as well on this algebra. Such an approach will in particular introduce no additional gauge fields as compared to the commutative case and also enable us to treat any gauge group (and not just U(N)). Then classical gravity and gauge sectors are the same as those for heta^{mu u}=0, but their interactions with matter fields is sensitive to theta^{mu u}. We construct quantum noncommutative gauge theories (for arbitrary gauge groups) by requiring consistency of twisted statistics and gauge invariance. In a subsequent paper (whose results are summarized here), the locality and Lorentz invariance properties of the S-matrices of these theories will be analyzed, and new non-trivial effects coming from noncommutativity will be elaborated.
This paper contains further developments of [hep-th/0608138] and a new formulation based on its approach.
Source arXiv, 0708.0069
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.






ScienXe.org
» my Online CV
» Free

home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2025 - Scimetrica