Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3669
Articles: 2'599'751
Articles rated: 2609

22 March 2025
 
  » arxiv » 0708.0115

 Article overview



Nuclear matrix elements of neutrinoless double beta decay with improved short-range correlations
Markus Kortelainen ; Jouni Suhonen ;
Date 1 Aug 2007
AbstractNuclear matrix elements of the neutrinoless double beta decays of 96Zr, 100Mo, 116Cd, 128Te, 130Te and 136Xe are calculated for the light-neutrino exchange mechanism by using the proton-neutron quasiparticle random-phase approximation (pnQRPA) with a realistic nucleon-nucleon force. The g_pp parameter of the pnQRPA is fixed by the data on the two-neutrino double beta decays and single beta decays. The finite size of a nucleon, the higher-order terms of nucleonic weak currents, and the nucleon-nucleon short-range correlations (s.r.c) are taken into account. The s.r.c. are computed by the traditional Jastrow method and by the more advanced unitary correlation operator method (UCOM). Comparison of the results obtained by the two methods is carried out. The UCOM computed matrix elements turn out to be considerably larger than the Jastrow computed ones. This result is important for the assessment of the neutrino-mass sensitivity of the present and future double beta experiments.
Source arXiv, 0708.0115
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.






ScienXe.org
» my Online CV
» Free

home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2025 - Scimetrica