Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3669
Articles: 2'599'751
Articles rated: 2609

22 March 2025
 
  » arxiv » 0708.0133

 Article overview



The clumpy structure of the chemically active L1157 outflow
Milena Benedettini ; Serena Viti ; Claudio Codella ; Rafael Bachiller ; Frederic Gueth ; Maria T. Beltràn ; Anne Dutrey ; Stephane Guilloteau ;
Date 1 Aug 2007
AbstractWe present high spatial resolution maps, obtained with the Plateau de Bure Interferometer, of the blue lobe of the L1157 outflow. We observed four lines at 3 mm, namely CH3OH (2_K-1_K), HC3N (11-10), HCN (1-0) and OCS (7-6). Moreover, the bright B1 clump has also been observed at better spatial resolution in CS (2-1), CH3OH (2_1-1_1)A-, and 34SO (3_2-2_1). These high spatial resolution observations show a very rich structure in all the tracers, revealing a clumpy structure of the gas superimposed to an extended emission. In fact, the three clumps detected by previous IRAM-30m single dish observations have been resolved into several sub-clumps and new clumps have been detected in the outflow. The clumps are associated with the two cavities created by two shock episodes driven by the precessing jet. In particular, the clumps nearest the protostar are located at the walls of the younger cavity with a clear arch-shape form while the farthest clumps have slightly different observational characteristics indicating that they are associated to the older shock episode. The emission of the observed species peaks in different part of the lobe: the east clumps are brighter in HC3N (11-10), HCN (1-0) and CS (2-1) while the west clumps are brighter in CH3OH(2_K-1_K), OCS (7-6) and 34SO (3_2-2_1). This peak displacement in the line emission suggests a variation of the physical conditions and/or the chemical composition along the lobe of the outflow at small scale, likely related to the shock activity and the precession of the outflow. In particular, we observe the decoupling of the silicon monoxide and methanol emission, common shock tracers, in the B1 clump located at the apex of the bow shock produced by the second shock episode.
Source arXiv, 0708.0133
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.






ScienXe.org
» my Online CV
» Free

home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2025 - Scimetrica