Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 2831
Articles: 1'983'807
Articles rated: 2574

11 August 2020
 
  » arxiv » 0810.1591

 Article overview


A Unified Monte Carlo Treatment of Gas-Grain Chemistry for Large Reaction Networks. I. Testing Validity of Rate Equations in Molecular Clouds
A.I. Vasyunin ; D.A. Semenov ; D.S. Wiebe ; Th. Henning ;
Date 9 Oct 2008
AbstractIn this study we demonstrate for the first time that the unified Monte Carlo approach can be applied to model gas-grain chemistry in large reaction networks. Specifically, we build a time-dependent gas-grain chemical model of the interstellar medium, involving about 6000 gas-phase and 200 grain surface reactions. This model is used to test the validity of the standard and modified rate equation methods in models of dense and translucent molecular clouds and to specify under which conditions the use of the stochastic approach is desirable.
We found that at temperatures 25--30 K gas-phase abundances of H$_2$O, NH$_3$, CO and many other gas-phase and surface species in the stochastic model differ from those in the deterministic models by more than an order of magnitude, at least, when tunneling is accounted for and/or diffusion energies are 3x lower than the binding energies. In this case, surface reactions, involving light species, proceed faster than accretion of the same species. In contrast, in the model without tunneling and with high binding energies, when the typical timescale of a surface recombination is greater than the timescale of accretion onto the grain, we obtain almost perfect agreement between results of Monte Carlo and deterministic calculations in the same temperature range. At lower temperatures ($sim10$ K) gaseous and, in particular, surface abundances of most important molecules are not much affected by stochastic processes.
Source arXiv, 0810.1591
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.






ScienXe.org
» my Online CV
» Free


News, job offers and information for researchers and scientists:
home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2020 - Scimetrica