| | |
| | |
Stat |
Members: 3667 Articles: 2'599'751 Articles rated: 2609
16 February 2025 |
|
| | | |
|
Article overview
| |
|
Control of inhomogeneous atomic ensembles of hyperfine qudits | Brian E. Mischuck
; Seth T. Merkel
; Ivan H. Deutsch
; | Date: |
1 Sep 2011 | Abstract: | We study the ability to control d-dimensional quantum systems (qudits)
encoded in the hyperfine spin of alkali-metal atoms through the application of
radio- and microwave-frequency magnetic fields in the presence of
inhomogeneities in amplitude and detuning. Such a capability is essential to
the design of robust pulses that mitigate the effects of experimental
uncertainty and also for application to tomographic addressing of particular
members of an extended ensemble. We study the problem of preparing an arbitrary
state in the Hilbert space from an initial fiducial state. We prove that
inhomogeneous control of qudit ensembles is possible based on a semi-analytic
protocol that synthesizes the target through a sequence of alternating rf and
microwave-driven SU(2) rotations in overlapping irreducible subspaces. Several
examples of robust control are studied, and the semi-analytic protocol is
compared to a brute force, full numerical search. For small inhomogeneities, <
1%, both approaches achieve average fidelities greater than 0.99, but the brute
force approach performs superiorly, reaching high fidelities in shorter times
and capable of handling inhomogeneities well beyond experimental uncertainty.
The full numerical search is also applied to tomographic addressing whereby two
different nonclassical states of the spin are produced in two halves of the
ensemble. | Source: | arXiv, 1109.0146 | Services: | Forum | Review | PDF | Favorites |
|
|
No review found.
Did you like this article?
Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.
|
| |
|
|
|