Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3667
Articles: 2'599'751
Articles rated: 2609

07 February 2025
 
  » arxiv » 1109.0158

 Article overview



Role of temperature and bath size in exact diagonalization dynamical mean field theory
Ansgar Liebsch ; Hiroshi Ishida ;
Date 1 Sep 2011
AbstractDMFT combined with finite-T exact diagonalization is one of the methods to describe electronic properties of strongly correlated materials. Because of the rapid growth of the Hilbert space, the size of the finite bath used to represent the infinite lattice is severely limited. In view of the increasing interest in the effect of multi-orbital and multi-site Coulomb correlations in transition metal oxides, high-Tc cuprates, iron-based pnictides, organic crystals, etc., it is appropriate to explore the range of temperatures and bath sizes in which ED provides accurate results for various system properties. The bath must be large enough to achieve a sufficiently dense level spacing, so that useful spectral information can be derived, especially close to the Fermi-level. For an adequate projection of the lattice Green’s function onto a finite bath, the choice of the temperature is crucial. The role of these two key ingredients in ED DMFT is discussed for a wide variety of systems in order to establish the domain of applicability of this approach. Three criteria are used to illustrate the accuracy of the results: (i) the convergence of the self-energy with bath size, (ii) quality of the discretization of the bath Green’s function, and (iii) comparisons with complementary results obtained via CTQMC DMFT. The materials comprise a variety of three- and five-orbital systems, as well as single-band Hubbard models for two-dimensional triangular, square and honeycomb lattices, where non-local Coulomb correlations are important. The main conclusion from these examples is that a larger number of correlated orbitals or sites requires a smaller number of bath levels. Down to temperatures of 5 to 10 meV (for typical band widths W=2 eV) two bath levels per correlated impurity orbital or site are usually adequate.
Source arXiv, 1109.0158
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.






ScienXe.org
» my Online CV
» Free

home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2025 - Scimetrica