| | |
| | |
Stat |
Members: 3667 Articles: 2'599'751 Articles rated: 2609
07 February 2025 |
|
| | | |
|
Article overview
| |
|
Discovering the Impact of Knowledge in Recommender Systems: A Comparative Study | Bahram Amini
; Roliana Ibrahim
; Mohd Shahizan Othman
; | Date: |
1 Sep 2011 | Abstract: | Recommender systems engage user profiles and appropriate filtering techniques
to assist users in finding more relevant information over the large volume of
information. User profiles play an important role in the success of
recommendation process since they model and represent the actual user needs.
However, a comprehensive literature review of recommender systems has
demonstrated no concrete study on the role and impact of knowledge in user
profiling and filtering approache. In this paper, we review the most prominent
recommender systems in the literature and examine the impression of knowledge
extracted from different sources. We then come up with this finding that
semantic information from the user context has substantial impact on the
performance of knowledge based recommender systems. Finally, some new clues for
improvement the knowledge-based profiles have been proposed. | Source: | arXiv, 1109.0166 | Services: | Forum | Review | PDF | Favorites |
|
|
No review found.
Did you like this article?
Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.
|
| |
|
|
|