Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3667
Articles: 2'599'751
Articles rated: 2609

08 February 2025
 
  » arxiv » 1109.0205

 Article overview



Studying Flow Close to an Interface by Total Internal Reflection Fluorescence Cross Correlation Spectroscopy: Quantitative Data Analysis
R. Schmitz ; S. Yordanov ; H. J. Butt ; K. Koynov ; B. Duenweg ;
Date Thu, 1 Sep 2011 15:03:56 GMT (1886kb)
AbstractTotal Internal Reflection Fluorescence Cross Correlation Spectroscopy (TIR-FCCS) has recently (S. Yordanov et al., Optics Express 17, 21149 (2009)) been established as an experimental method to probe hydrodynamic flows near surfaces, on length scales of tens of nanometers. Its main advantage is that fluorescence only occurs for tracer particles close to the surface, thus resulting in high sensitivity. However, the measured correlation functions only provide rather indirect information about the flow parameters of interest, such as the shear rate and the slip length. In the present paper, we show how to combine detailed and fairly realistic theoretical modeling of the phenomena by Brownian Dynamics simulations with accurate measurements of the correlation functions, in order to establish a quantitative method to retrieve the flow properties from the experiments. Firstly, Brownian Dynamics is used to sample highly accurate correlation functions for a fixed set of model parameters. Secondly, these parameters are varied systematically by means of an importance-sampling Monte Carlo procedure in order to fit the experiments. This provides the optimum parameter values together with their statistical error bars. The approach is well suited for massively parallel computers, which allows us to do the data analysis within moderate computing times. The method is applied to flow near a hydrophilic surface, where the slip length is observed to be smaller than 10nm, and, within the limitations of the experiments and the model, indistinguishable from zero.
Source arXiv, 1109.0205
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.






ScienXe.org
» my Online CV
» Free

home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2025 - Scimetrica