Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3667
Articles: 2'599'751
Articles rated: 2609

18 February 2025
 
  » arxiv » 1508.0061

 Article overview



One-step implementation of entanglement generation on microwave photons in distant 1D superconducting resonators
Ming Hua ; Ming-Jie Tao ; Fu-Guo Deng ;
Date 1 Aug 2015
AbstractWe present a scalable quantum-bus-based device for generating the entanglement on microwave photons (MPs) in distant superconducting resonators (SRs). Different from the processors in previous works with some resonators coupled to a superconducting qubit (SQ), our device is composed of some 1D SRs $r_j$ which are coupled to the quantum bus (another common resonator $R$) in its different positions simply, assisted by superconducting quantum interferometer devices. By using the technique for catching and releasing a MP state in a 1D SR, it can work as an entanglement generator or a node in quantum communication. To demonstrate the performance of this device, we propose a one-step scheme to generate high-fidelity Bell states on MPs in two distant SRs. It works in the dispersive regime of $r_j$ and $R$, which enables us to extend it to generate high-fidelity multi-Bell states on different resonator pairs simultaneously.
Source arXiv, 1508.0061
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.






ScienXe.org
» my Online CV
» Free

home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2025 - Scimetrica