Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3667
Articles: 2'599'751
Articles rated: 2609

15 February 2025
 
  » arxiv » 1508.0065

 Article overview



Kinetic inductance driven nanoscale 2D and 3D THz transmission lines
S. Hossein Mousavi ; Ian A. D. Williamson ; Zheng Wang ;
Date 1 Aug 2015
AbstractWe examine the unusual dispersion and attenuation of transverse electromagnetic waves in the few-THz regime on nanoscale graphene and copper transmission lines. Conventionally, such propagation has been considered to be highly dispersive, due to the RC-constant-driven voltage diffusion below 1THz and plasmonic effects at higher frequencies. Our numerical modelling between the microwave and optical regimes reveals that conductor kinetic inductance creates an ultra-broadband LC region. This resultant frequency-independent attenuation is an ideal characteristic that is known to be non-existent in macro-scale transmission lines. The kinetic-LC frequency range is dictated by the structural dimensionality and the free-carrier scattering rate of the conductor material. Moreover, up to 40x wavelength reduction is observed in graphene transmission lines.
Source arXiv, 1508.0065
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.






ScienXe.org
» my Online CV
» Free

home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2025 - Scimetrica