Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3667
Articles: 2'599'751
Articles rated: 2609

07 February 2025
 
  » arxiv » 1508.0086

 Article overview



Ensemble order parameter equations in star network
YuTing Sun ; Jian Gao ; Can Xu ; Xia Huang ; Zhigang Zheng ;
Date 1 Aug 2015
AbstractThe OA ansatz has attracted much attention recently, infinite-dimensional Kuramoto model could collapses to a two-dimensional system of order differential equations with it. In this paper, we propose the ensemble order parameter (EOP) equations to describe the dynamics for networks with a finite size. To verify the effectiveness of this method, we apply it into the star network and star-connected network. In the star network, numerous phase transitions among different synchronous states are observed, three processes of synchronization, one process of de-synchronization and a group of hybrid phase transitions, the processes of those transitions are revealed by the EOP dynamics and other nolinear tools such as time reversibility analysis and linear stability analysis. Also in the star-connected network, the two-step synchronization transition is observed. The process of it is still be revealed by the similar methods in the single star network.
Source arXiv, 1508.0086
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.






ScienXe.org
» my Online CV
» Free

home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2025 - Scimetrica