Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3667
Articles: 2'599'751
Articles rated: 2609

17 February 2025
 
  » arxiv » 1508.0088

 Article overview



Turnover Prediction Of Shares using Data Mining techniques : A Case Study
D.S. Shashaank ; V. Sruthi ; M.L.S Vijayalakshimi ; Jacob Shomona Garcia ;
Date 1 Aug 2015
AbstractPredicting the turnover of a company in the ever fluctuating Stock market has always proved to be a precarious situation and most certainly a difficult task in hand. Data mining is a well-known sphere of Computer Science that aims on extracting meaningful information from large databases. However, despite the existence of many algorithms for the purpose of predicting the future trends, their efficiency is questionable as their predictions suffer from a high error rate. The objective of this paper is to investigate various classification algorithms to predict the turnover of different companies based on the Stock price. The authorized dataset for predicting the turnover was taken from www.bsc.com and included the stock market values of various companies over the past 10 years. The algorithms were investigated using the "R" tool. The feature selection algorithm, Boruta, was run on this dataset to extract the important and influential features for classification. With these extracted features, the Total Turnover of the company was predicted using various classification algorithms like Random Forest, Decision Tree, SVM and Multinomial Regression. This prediction mechanism was implemented to predict the turnover of a company on an everyday basis and hence could help navigate through dubious stock market trades. An accuracy rate of 95% was achieved by the above prediction process. Moreover, the importance of stock market attributes was established as well.
Source arXiv, 1508.0088
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.






ScienXe.org
» my Online CV
» Free

home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2025 - Scimetrica