Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3667
Articles: 2'599'751
Articles rated: 2609

09 February 2025
 
  » arxiv » 1508.0102

 Article overview



Towards Distortion-Predictable Embedding of Neural Networks
Axel Angel ;
Date 1 Aug 2015
AbstractCurrent research in Computer Vision has shown that Convolutional Neural Networks (CNN) give state-of-the-art performance in many classification tasks and Computer Vision problems. The embedding of CNN, which is the internal representation produced by the last layer, can indirectly learn topological and relational properties. Moreover, by using a suitable loss function, CNN models can learn invariance to a wide range of non-linear distortions such as rotation, viewpoint angle or lighting condition. In this work, new insights are discovered about CNN embeddings and a new loss function is proposed, derived from the contrastive loss, that creates models with more predicable mappings and also quantifies distortions. In typical distortion-dependent methods, there is no simple relation between the features corresponding to one image and the features of this image distorted. Therefore, these methods require to feed-forward inputs under every distortions in order to find the corresponding features representations. Our contribution makes a step towards embeddings where features of distorted inputs are related and can be derived from each others by the intensity of the distortion.
Source arXiv, 1508.0102
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.






ScienXe.org
» my Online CV
» Free

home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2025 - Scimetrica