| | |
| | |
Stat |
Members: 3667 Articles: 2'599'751 Articles rated: 2609
16 February 2025 |
|
| | | |
|
Article overview
| |
|
PTE: Predictive Text Embedding through Large-scale Heterogeneous Text Networks | Jian Tang
; Meng Qu
; Qiaozhu Mei
; | Date: |
2 Aug 2015 | Abstract: | Unsupervised text embedding methods, such as Skip-gram and Paragraph Vector,
have been attracting increasing attention due to their simplicity, scalability,
and effectiveness. However, comparing to sophisticated deep learning
architectures such as convolutional neural networks, these methods usually
yield inferior results when applied to particular machine learning tasks. One
possible reason is that these text embedding methods learn the representation
of text in a fully unsupervised way, without leveraging the labeled information
available for the task. Although the low dimensional representations learned
are applicable to many different tasks, they are not particularly tuned for any
task. In this paper, we fill this gap by proposing a semi-supervised
representation learning method for text data, which we call the
extit{predictive text embedding} (PTE). Predictive text embedding utilizes
both labeled and unlabeled data to learn the embedding of text. The labeled
information and different levels of word co-occurrence information are first
represented as a large-scale heterogeneous text network, which is then embedded
into a low dimensional space through a principled and efficient algorithm. This
low dimensional embedding not only preserves the semantic closeness of words
and documents, but also has a strong predictive power for the particular task.
Compared to recent supervised approaches based on convolutional neural
networks, predictive text embedding is comparable or more effective, much more
efficient, and has fewer parameters to tune. | Source: | arXiv, 1508.0200 | Services: | Forum | Review | PDF | Favorites |
|
|
No review found.
Did you like this article?
Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.
|
| |
|
|
|