Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3667
Articles: 2'599'751
Articles rated: 2609

18 February 2025
 
  » arxiv » 1508.0216

 Article overview



Eikonal approximation, Finsler structures, and implications for Lorentz-violating photons in weak gravitational fields
M. Schreck ;
Date 2 Aug 2015
AbstractThe current article shall contribute to understanding the classical analogue of the minimal photon sector in the Lorentz-violating Standard-Model Extension (SME). It is supposed to complement all studies performed on classical point-particle equivalents of SME fermions. The classical analogue of a photon is not a massive particle being described by a usual equation of motion, but a geometric ray underlying the eikonal equation. The first part of the paper will set up the necessary tools to understand this correspondence for interesting cases of the minimal SME photon sector. In conventional optics the eikonal equation follows from an action principle, which is demonstrated to work in most (but not all) Lorentz-violating cases as well. The integrands of the action functional correspond to Finsler structures, which establishes the connection to Finsler geometry. The second part of the article treats Lorentz-violating light rays in a weak gravitational background by implementing the principle of minimal coupling. Thereby it is shown how Lorentz violation in the photon sector can be constrained by measurements of light bending at massive bodies such as the Sun. The phenomenological studies are based on the currently running ESA mission GAIA and the planned NASA/ESA mission LATOR. The final part of the paper discusses certain aspects of explicit Lorentz violation in gravity based on the setting of Finsler geometry.
Source arXiv, 1508.0216
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.






ScienXe.org
» my Online CV
» Free

home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2025 - Scimetrica