| | |
| | |
Stat |
Members: 3667 Articles: 2'599'751 Articles rated: 2609
15 February 2025 |
|
| | | |
|
Article overview
| |
|
Toward a Robust Sparse Data Representation for Wireless Sensor Networks | Mohammad Abu Alsheikh
; Shaowei Lin
; Hwee-Pink Tan
; Dusit Niyato
; | Date: |
2 Aug 2015 | Abstract: | Compressive sensing has been successfully used for optimized operations in
wireless sensor networks. However, raw data collected by sensors may be neither
originally sparse nor easily transformed into a sparse data representation.
This paper addresses the problem of transforming source data collected by
sensor nodes into a sparse representation with a few nonzero elements. Our
contributions that address three major issues include: 1) an effective method
that extracts population sparsity of the data, 2) a sparsity ratio guarantee
scheme, and 3) a customized learning algorithm of the sparsifying dictionary.
We introduce an unsupervised neural network to extract an intrinsic sparse
coding of the data. The sparse codes are generated at the activation of the
hidden layer using a sparsity nomination constraint and a shrinking mechanism.
Our analysis using real data samples shows that the proposed method outperforms
conventional sparsity-inducing methods. | Source: | arXiv, 1508.0230 | Services: | Forum | Review | PDF | Favorites |
|
|
No review found.
Did you like this article?
Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.
|
| |
|
|
|