Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3669
Articles: 2'599'751
Articles rated: 2609

24 March 2025
 
  » arxiv » 1508.0323

 Article overview



Semi-positivity of fiberwise Ricci-flat metrics on Calabi-Yau fibrations
Young-Jun Choi ;
Date 3 Aug 2015
AbstractLet $X$ be a K"ahler manifold which is fibered over a complex manifold $Y$ such that every fiber is a Calabi-Yau manifold. Let $omega$ be a fixed K"ahler form on $X$. By the theorem due to Yau, there exists a unique Ricci-flat K"ahler form $ hovert_{X_y}$ for each fiber, which is cohomologous to $omegavert_{X_y}$. This family of Ricci-flat K"ahler forms $ hovert_{X_y}$ induce a smooth $(1,1)$-form $ ho$ on $X$. In this paper, we prove that $ ho$ is semi-positive on the total space $X$. We also discuss several byproducts, among them the local triviality of families of Calabi-Yau manifolds.
Source arXiv, 1508.0323
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.






ScienXe.org
» my Online CV
» Free

home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2025 - Scimetrica