Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3669
Articles: 2'599'751
Articles rated: 2609

22 March 2025
 
  » arxiv » 1508.0406

 Article overview



Chain Integral Solutions to Tautological Systems
An Huang ; Bong H. Lian ; Shing-Tung Yau ; Xinwen Zhu ;
Date 3 Aug 2015
AbstractWe give a new geometrical interpretation of the local analytic solutions to a differential system, which we call a tautological system $ au$, arising from the universal family of Calabi-Yau hypersurfaces $Y_a$ in a $G$-variety $X$ of dimension $n$. First, we construct a natural topological correspondence between relative cycles in $H_n(X-Y_a,cup D-Y_a)$ bounded by the union of $G$-invariant divisors $cup D$ in $X$ to the solution sheaf of $ au$, in the form of chain integrals. Applying this to a toric variety with torus action, we show that in addition to the period integrals over cycles in $Y_a$, the new chain integrals generate the full solution sheaf of a GKZ system. This extends an earlier result for hypersurfaces in a projective homogeneous variety, whereby the chains are cycles. In light of this result, the mixed Hodge structure of the solution sheaf is now seen as the MHS of $H_n(X-Y_a,cup D-Y_a)$. In addition, we generalize the result on chain integral solutions to the case of general type hypersurfaces. This chain integral correspondence can also be seen as the Riemann-Hilbert correspondence in one homological degree. Finally, we consider interesting cases in which the chain integral correspondence possibly fails to be bijective.
Source arXiv, 1508.0406
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.






ScienXe.org
» my Online CV
» Free

home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2025 - Scimetrica