Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3667
Articles: 2'599'751
Articles rated: 2609

09 February 2025
 
  » arxiv » 1605.0224

 Article overview



Stimulated Raman adiabatic passage in physics, chemistry and beyond
Nikolay V. Vitanov ; Andon A. Rangelov ; Bruce W. Shore ; Klaas Bergmann ;
Date 1 May 2016
AbstractThe technique of stimulated Raman adiabatic passage (STIRAP), which allows efficient and selective population transfer between quantum states without suffering loss due to spontaneous emission, was introduced in 1990 (Gaubatz emph{et al.}, J. Chem. Phys. extbf{92}, 5363, 1990). Since then STIRAP has emerged as an enabling methodology with widespread successful applications in many fields of physics, chemistry and beyond. This article reviews the many applications of STIRAP emphasizing the developments since 2000, the time when the last major review on the topic was written (Vitanov emph{et al.}, Adv. At. Mol. Opt. Phys. extbf{46}, 55, 2001). A brief introduction into the theory of STIRAP and the early applications for population transfer within three-level systems is followed by the discussion of several extensions to multi-level systems, including multistate chains and tripod systems. The main emphasis is on the wide range of applications in atomic and molecular physics (including atom optics, cavity quantum electrodynamics, formation of ultracold molecules, precision experiments, etc.), quantum information (including single- and two-qubit gates, entangled-state preparation, etc.), solid-state physics (including processes in doped crystals, nitrogen-vacancy centers, superconducting circuits, etc.), and even some applications in classical physics (including waveguide optics, frequency conversion, polarization optics, etc.). Promising new prospects for STIRAP are also presented (including processes in optomechanics, detection of parity violation in molecules, spectroscopy of core-nonpenetrating Rydberg states, and population transfer with X-ray pulses).
Source arXiv, 1605.0224
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.






ScienXe.org
» my Online CV
» Free

home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2025 - Scimetrica