Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3667
Articles: 2'599'751
Articles rated: 2609

08 February 2025
 
  » arxiv » 1605.0329

 Article overview



Some Insights into the Geometry and Training of Neural Networks
Ewout van den Berg ;
Date 2 May 2016
AbstractNeural networks have been successfully used for classification tasks in a rapidly growing number of practical applications. Despite their popularity and widespread use, there are still many aspects of training and classification that are not well understood. In this paper we aim to provide some new insights into training and classification by analyzing neural networks from a feature-space perspective. We review and explain the formation of decision regions and study some of their combinatorial aspects. We place a particular emphasis on the connections between the neural network weight and bias terms and properties of decision boundaries and other regions that exhibit varying levels of classification confidence. We show how the error backpropagates in these regions and emphasize the important role they have in the formation of gradients. These findings expose the connections between scaling of the weight parameters and the density of the training samples. This sheds more light on the vanishing gradient problem, explains the need for regularization, and suggests an approach for subsampling training data to improve performance.
Source arXiv, 1605.0329
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.






ScienXe.org
» my Online CV
» Free

home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2025 - Scimetrica