Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3667
Articles: 2'599'751
Articles rated: 2609

07 February 2025
 
  » arxiv » 1605.0392

 Article overview



Revisiting Human Action Recognition: Personalization vs. Generalization
Andrea Zunino ; Jacopo Cavazza ; Vittorio Murino ;
Date 2 May 2016
AbstractBy thoroughly revisiting the classic human action recognition paradigm, this paper aims at proposing a new approach for the design of effective action classification systems. Taking as testbed publicly available three-dimensional (MoCap) action/activity datasets, we analyzed and validated different training/testing strategies. In particular, considering that each human action in the datasets is performed several times by different subjects, we were able to precisely quantify the effect of inter- and intra-subject variability, so as to figure out the impact of several learning approaches in terms of classification performance. The net result is that standard testing strategies consisting in cross-validating the algorithm using typical splits of the data (holdout, k-fold, or one-subject-out) is always outperformed by a "personalization" strategy which learns how a subject is performing an action. In other words, it is advantageous to customize (i.e., personalize) the method to learn the actions carried out by each subject, rather than trying to generalize the actions executions across subjects. Consequently, we finally propose an action recognition framework consisting of a two-stage classification approach where, given a test action, the subject is first identified before the actual recognition of the action takes place. Despite the basic, off-the-shelf descriptors and standard classifiers adopted, we noted a relevant increase in performance with respect to standard state-of-the-art algorithms, so motivating the usage of personalized approaches for designing effective action recognition systems.
Source arXiv, 1605.0392
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.






ScienXe.org
» my Online CV
» Free

home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2025 - Scimetrica