| | |
| | |
Stat |
Members: 3667 Articles: 2'599'751 Articles rated: 2609
07 February 2025 |
|
| | | |
|
Article overview
| |
|
Cavitation inception of a van der Waals fluid at a sack-wall obstacle | G. Kaehler
; F. Bonelli
; G. Gonnella
; A. Lamura
; | Date: |
2 May 2016 | Abstract: | Cavitation in a liquid moving past a constraint is numerically investigated
by means of a free-energy lattice Boltzmann simulation based on the van der
Waals equation of state. The fluid is streamed past an obstacle and, depending
on the pressure drop between inlet and outlet, vapor formation underneath the
corner of the sack-wall is observed. The circumstances of cavitation formation
are investigated and it is found that the local bulk pressure and mean stress
are insufficient to explain the phenomenon. Results obtained in this study
strongly suggest that the viscous stress, interfacial contributions to the
local pressure, and the Laplace pressure are relevant to the opening of a vapor
cavity. This can be described by a generalization of Joseph’s criterion that
includes these contributions. A macroscopic investigation measuring mass flow
rate behavior and discharge coefficient was also performed. As theoretically
predicted, mass flow rate increases linearly with the square root of the
pressure drop. However, when cavitation occurs, the mass flow growth rate is
reduced and eventually it collapses into a choked flow state. In the cavitating
regime, as theoretically predicted and experimentally verified, the discharge
coefficient grows with the Nurick cavitation number. | Source: | arXiv, 1605.0399 | Services: | Forum | Review | PDF | Favorites |
|
|
No review found.
Did you like this article?
Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.
|
| |
|
|
|