| | |
| | |
Stat |
Members: 3667 Articles: 2'599'751 Articles rated: 2609
07 February 2025 |
|
| | | |
|
Article overview
| |
|
Computing Real Roots of Real Polynomials ... and now For Real! | Alexander Kobel
; Fabrice Rouillier
; Michael Sagraloff
; | Date: |
2 May 2016 | Abstract: | Very recent work introduces an asymptotically fast subdivision algorithm,
denoted ANewDsc, for isolating the real roots of a univariate real polynomial.
The method combines Descartes’ Rule of Signs to test intervals for the
existence of roots, Newton iteration to speed up convergence against clusters
of roots, and approximate computation to decrease the required precision. It
achieves record bounds on the worst-case complexity for the considered problem,
matching the complexity of Pan’s method for computing all complex roots and
improving upon the complexity of other subdivision methods by several
magnitudes.
In the article at hand, we report on an implementation of ANewDsc on top of
the RS root isolator. RS is a highly efficient realization of the classical
Descartes method and currently serves as the default real root solver in Maple.
We describe crucial design changes within ANewDsc and RS that led to a
high-performance implementation without harming the theoretical complexity of
the underlying algorithm.
With an excerpt of our extensive collection of benchmarks, available online
at this http URL, we illustrate that the theoretical gain in
performance of ANewDsc over other subdivision methods also transfers into
practice. These experiments also show that our new implementation outperforms
both RS and mature competitors by magnitudes for notoriously hard instances
with clustered roots. For all other instances, we avoid almost any overhead by
integrating additional optimizations and heuristics. | Source: | arXiv, 1605.0410 | Services: | Forum | Review | PDF | Favorites |
|
|
No review found.
Did you like this article?
Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.
|
| |
|
|
|