Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3669
Articles: 2'599'751
Articles rated: 2609

24 March 2025
 
  » arxiv » 1605.0590

 Article overview



Performance of the finite volume method in solving regularised Bingham flows: inertia effects in the lid-driven cavity flow
Alexandros Syrakos ; Georgios C. Georgiou ; Andreas N. Alexandrou ;
Date 2 May 2016
AbstractWe extend our recent work on the creeping flow of a Bingham fluid in a lid-driven cavity, to the study of inertial effects, using a finite volume method and the Papanastasiou regularisation of the Bingham constitutive model [J. Rheology 31 (1987) 385-404]. The finite volume method used belongs to a very popular class of methods for solving Newtonian flow problems, which use the SIMPLE algorithm to solve the discretised set of equations, and have matured over the years. By regularising the Bingham constitutive equation it is easy to extend such a solver to Bingham flows since all that this requires is to modify the viscosity function. This is a tempting approach, since it requires minimum programming effort and makes available all the existing features of the mature finite volume solver. On the other hand, regularisation introduces a parameter which controls the error in addition to the grid spacing, and makes it difficult to locate the yield surfaces. Furthermore, the equations become stiffer and more difficult to solve, while the discontinuity at the yield surfaces causes large truncation errors. The present work attempts to investigate the strengths and weaknesses of such a method by applying it to the lid-driven cavity problem for a range of Bingham and Reynolds numbers (up to 100 and 5000 respectively). By employing techniques such as multigrid, local grid refinement, and an extrapolation procedure to reduce the effect of the regularisation parameter on the calculation of the yield surfaces (Liu et al. J. Non-Newtonian Fluid Mech. 102 (2002) 179-191), satisfactory results are obtained, although the weaknesses of the method become more noticeable as the Bingham number is increased.
Source arXiv, 1605.0590
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.






ScienXe.org
» my Online CV
» Free

home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2025 - Scimetrica