| | |
| | |
Stat |
Members: 3669 Articles: 2'599'751 Articles rated: 2609
16 March 2025 |
|
| | | |
|
Article overview
| |
|
CAIR: Using Formal Languages to Study Routing, Leaking, and Interception in BGP | Johann Schlamp
; Matthias Wählisch
; Thomas C. Schmidt
; Georg Carle
; Ernst W. Biersack
; | Date: |
2 May 2016 | Abstract: | The Internet routing protocol BGP expresses topological reachability and
policy-based decisions simultaneously in path vectors. A complete view on the
Internet backbone routing is given by the collection of all valid routes, which
is infeasible to obtain due to information hiding of BGP, the lack of
omnipresent collection points, and data complexity. Commonly, graph-based data
models are used to represent the Internet topology from a given set of BGP
routing tables but fall short of explaining policy contexts. As a consequence,
routing anomalies such as route leaks and interception attacks cannot be
explained with graphs.
In this paper, we use formal languages to represent the global routing system
in a rigorous model. Our CAIR framework translates BGP announcements into a
finite route language that allows for the incremental construction of minimal
route automata. CAIR preserves route diversity, is highly efficient, and
well-suited to monitor BGP path changes in real-time. We formally derive
implementable search patterns for route leaks and interception attacks. In
contrast to the state-of-the-art, we can detect these incidents. In practical
experiments, we analyze public BGP data over the last seven years. | Source: | arXiv, 1605.0618 | Services: | Forum | Review | PDF | Favorites |
|
|
No review found.
Did you like this article?
Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.
|
| |
|
|
|